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An experimental investigation was made of the stability of a two-dimensional 
jet at low Reynolds numbers with extremely small residual disturbances both 
in and around the jet. The velocity distribution of a laminar jet is in agreement 
with Bickley’s theoretical result. The stability and transition of a laminar jet 
are characterized by the Reynolds number based on the slit width and the 
maximum velocity of the jet. When the Reynolds number is less than 10, the 
whole jet is laminar. When the Reynolds number is between 10 and around 50, 
periodic velocity fluctuations are found in the jet. They die out as they travel 
downstream without developing into irregular fluctuations. When the Reynolds 
number exceeds about 50, periodic fluctuations develop into irregular, turbulent 
fluctuations. The frequency of the periodic fluctuation is roughly proportional to 
the square of the jet velocity. 

The stability of the jet against an artificially imposed disturbance was also 
investigated. Sound was used as an artificial disturbance. The disturbance is 
either amplified or damped in the jet depending on its frequency. The conventional 
stability theory was modified by considering the streamwise increase of Reynolds 
number. The experimental results are in agreement with the theoretical results. 

1. Introduction 
One of the most important features of free shear-layers such as wakes and jets 

is that they are extremely unstable. A theoretical investigation of the stability 
of a two-dimensional jet was made by Savic (1941) when the Reynolds number 
is very large. Stability calculations at low Reynolds numbers were made by 
Curle (1957), Howard (1958), Tatsumi & Kakutani (1958) and Clenshaw & 
Elliott (1960). The critical Reynolds number of instability is estimated to be less 
than 10. These stability calculations are based on the Orr-Sommerfeld equation 
which is essentially a linearized equation of motion for small perturbations 
superposed on the basic flow. 

Early experiments on a jet were mainly concerned with the generation of 
sound from the jet (Kohlrausch 1881; Kruger & Schmidtke 1919; Brown 1935) 
and were conducted at considerably higher Reynolds numbers. In  1939 Andrade 
made a measurement on the velocity distribution of a two-dimensional water-to- 
water jet at low Reynolds numbers and found a good agreement with the 
theoretical results of Bickley (1937). Andrade observed that the jet becomes 
unstable when the Reynolds number based on the effusion velocity and the width 
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of the slit exceeds about 10. His experimental results on the instability were 
insufficient for making a quantitative discussion on the stability characterististics 
at low Reynolds numbers. Recently,' Chanaud & Powell (1962) observed the 
stability of a two-dimensional water-to-water jet in the range of Reynolds number 
from several tens to 400. They measured also the velocity distribution of a low 
Reynolds number air jet. Their results on the stability showed a qualitative 
agreement with theoretical predictions. 

One of the authors (Sato 1960) carried out a detailed investigation of the 
instability and transition of a two-dimensional jet at high Reynolds numbers. 
He has shown that observed values of the amplification rate, the propagation 
velocity and the amplitude distribution of small-amplitude velocity fluctuations 
are in good agreement with the theoretical results based on the Orr-Sommerfeld 
equation. The present experiment, as a direct extension of the previous work, 
was made with the intention of observing the instability of a two-dimensional jet 
at extremely low Reynolds numbers. The experimental results were compared 
with the theoretical results. The transition process from a laminar to a turbulent 
jet was also observed. 

2. Experimental arrangement 
Two rectangular nozzles with different slit sizes were used for producing two- 

dimensional jets of various Reynolds numbers. Slits were 0.2 mm by 30 mm and 
1.lmm by 100mm. Aspect ratios of the two nozzle slits were 150 and 90, 
respectively. Detailed measurements were made by using the smaller nozzle. 
The range of the jet velocity at the centre of the nozzle slit was from 90 to 1500 cm/s 
and the Reynolds number at the slit R, = 2U0, h/v (U,, being the velocity at the 
centre of the nozzle slit, 2h the width of the slit and v the kinematic viscosity) 
varied from 12 to  200 with the smaller nozzle and from 320 to 1200 with the larger 
nozzle. 

Details of the test section are illustrated in figure 1. Air is supplied from an air 
tank, into which water is introduced from a small hole. The air in the tank is 
replaced by the water and comes out of the top of the tank. The flow of air is 
controlled by a water valve. This system is free from the sound noise and 
mechanical vibrations which have fatal effects on the stability of a jet. The air 
from the tank goes through a settling chamber and is accelerated by a two- 
dimensional contraction. To the contraction is connected a parallel channel which 
has the same cross-section as the nozzle slit and is long enough for realizing a 
parabolic velocity distribution at the nozzle exit. The air issuing from the nozzle 
induces an air flow from both sides of the jet. In  order to reduce the disturbance 
introduced into the induced flow a faired passage was provided as shown in the 
figure. The test-section was surrounded by two pairs of walls. One is shown in the 
figure and the other pair of walls is attached to both ends of the nozzle slit for 
consolidating the two-dimensionality of the jet. Experiments were carried out 
in anisolatedsilent room free from draught, sound noise and mechanical vibrations. 

A hot-wire anemometer was used exclusively for measuring mean and fluc- 
tuating velocities. The hot-wire was inserted through a rectangular hole in one 
of the walls shown in figure 1 and moved inX- (parallel to the jet) and Y-directions 



Instability of a two-dimensional jet 339 

(perpendicular to the jet and the slit) with precision micrometers. The calibration 
of the hot-wire was made by placing it on the axis of a long circular pipe which 
was made especially for the calibration. The air was supplied to the pipe from the 
same air tank. Since the volume flow of air is known and the velocity distribution 
at the exit of the pipe is expected to be parabolic, the velocity on the axis is 
determined. By using this procedure for calibration, the flow velocity down to 

Traversing 4 

- 
0 50 

mm 
FIGURE 1. Experimental set-up. 

20 cmjs was measured with considerable accuracy. The volume flow of air a t  the 
slit calculated from the hot-wire measurement showed good agreement with the 
volume flow of water into the tank. The hot-wire anemometer was operated by 
a constant current method and the voltage output from the wire was amplified 
either by an a.c. amplifier with an appropriate high-frequency compensation or 
by a d.c. amplifier without compensation depending on the frequency of fluctua- 
tions. The frequency range of the velocity fluctuations was approximately from 2 
to lOOOc/s. The output of the amplifier was fed to a cathode-ray oscilloscope. 
The wave-form of the velocity fluctuation was recorded by taking pictures of 
the screen of the oscilloscope. 

The jet was excited by an artificial disturbance when necessary. A 10 W loud- 
speaker was used for this purpose. The maximum available intensity of the sound 
from the loudspeaker was 80 decibels at  the nozzle exit. 

3. Mean-velocity distribution 
Experiments were carried out in three steps. First, measurements were made 

of the distribution of the time-mean velocity. Secondly, the velocity fluctuation 
in the natural transition was observed. Thirdly, the instability of the jet due to 
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artificial disturbances was investigated. Figure 2 shows the mean-velocity 
distribution which was measured by a hot-wire anemometer with the velocity 
at the centre of the slit U,, = 313cmls. The slit Reynolds number is 42. The 
velocity on the centre-line of the jet decreases and the width of the jet increases 
downstream. The distribution itself seems to be similar at various X-stations. 
This similarity is clearly demonstrated in figure 3 in which U is normalized by the 

FIGURE 2. Lateral distribution of time-mean velocity. Slit 0.2 mm. Velocity 
a t  the centre of the slit, 313 cm/s. 

AX= 10mm 

2 

FIGURE 3. Non-dimensionalized distribution of mean velocity. Slit 042 mm. 
Solid line is the theoretical distribution given by Bickley (1937). 
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maximum speed V, at each X-station and Y is non-dimensionalized by the half 
breadth b-the distance from the centre line to the point where U/U, = 8. 

Bickley (1937) calculated the velocity distribution of a laminar two-dimen- 
sional jet and gave an analytical expression, 

U/Uo = sech2aY/b (a=0.88136). 

In  figure 3 the theoretical curve (solid line) is compared with experimental 
results. The agreement between the theoretical and experimental results is 
fairly good. Bickley’s calculation gives the variations of U, and b in the flow 
direction 

in which M is defined as 

M =Iw U 2 d Y .  
-02 

47, = 117 cm/s 
4 7 ,  = 173 cm/s 

XUoo = 770 cmfs 
oU, = 313 C ~ / S  

X / 2 h  X / 2 h  

FIGURE 4. Streamwise variation of central 
velocity. Slit 0.2 mm. 

FIGURE 5 .  Streamwise variation of the 
half breadth of the jet. Slit 0.2mm. 

Considering that no external force is present in the flow field the momentum 
of the jet must be constant. Therefore, U c 3  and b* are considered to be propor- 
tional to X. Experimental results on U, and b are plotted in figures 4 and 5. Both 
( ?4,/U0)3 and (b/h)% are linear to X/2h.  In  other words, M is shown to be constant 
throughout the flow field. However, each line starts from a virtual origin which is 
different from the geometrical origin. This is because the nozzle slit has a finite 
width and moreover the velocity distribution a t  the slit is not of jet-type distri- 
bution but parabolic. A self-similar velocity distribution is established a t  some 
distance downstream. These results are close to the results of Andrade (1939) 
which were obtained in a water-to-water jet. 

The location of the virtual origin is determined by the extrapolation of U,y3 vsX 
curve and plotted against the slit Reynolds number in figure 6. The virtual origin 
seems to move upstream as the Reynolds number increases. Data obtained by 
Andrade and Chanaud & Powell are also plotted. There is a discrepancy between 
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the data of the different investigators. The discrepancy might come primarily 
from the difference in the nozzle geometry. 

The kinematic momentum M calculated from the gradient of the U;3 vs X 
curve is shown in figure 7. Values of M thus obtained are considerably less than 
the value at the nozzle exit calculated from 

The ratio MIX, lies between 0-5 and 0.8. Calculated values from the data of 
Chanaud & Powell are also shown. No detailed mechanism of loss of momentum 
is known. One of the authors (Sato 1960) found that there is a low-pressure region 

0 50 100 150 200 250 
slit Reynolds number, ZJLUoo/v 

FIGURE 6. Location of virtual origin w8 slit Reynolds number. X ,  denotes the 
location of the virtual origin measured from the slit in the flow direction. 

slit Reynolds number, 2hUo0/v 

FIGURE 7. Kinematic momentum M of the jet wa slit Reynolds number. Mo denotes 
the kinematic momentum at  the slit. 
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in the jet near the nozzle exit. The loss of momentum might be related to the 
presence of the low-pressure region. 

It is concluded that Bickley ’s calculation of the mean-velocity distribution is 
in good agreement with the present experimental results if the location of the 
origin is properly shifted and the momentum loss is properly taken into account. 
In  comparison with experimental results on a high Reynolds number jet (Sato 
1960) it is noticed that at low Reynolds number a laminar jet is established before 
velocity fluctuations appear. At a high Reynolds number the amplification of 
disturbances is very rapid and the transition takes place at about X/2h  = 5 N 10 
where the mean velocity is still almost parabolic rather than in the form of 
sech2 Y/b. The difference of mean-velocity distributions at high and low Reynolds 
numbers causes a difference in the stability characteristics. A detailed discussion 
of this point will be made later. 

4. Velocity fluctuations 
When residual disturbances in and around a jet are made extremely small, the 

transition from a laminar to a turbulent jet is considered to be the ‘natural 
transition ’. Even in this case the transition is caused by small and uncontrollable 

U, = 231 cm/s R, = 2hUdv = 31 Y i l m m  --- - 
.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

X = 5 m m  X = l O m m  X = 1 5 m m  X = 2 0 m m  X-25mm 
VOO = 486 cmh R, = 2hUOd~ = 65 Y = l m m  

.......................................................................... 
x=3m X = 7 m m  X=2Omm X = 2 5 m m  X = 1 5 m m  

FIUURE 8. Typical oscillographic records of streamwise velocity fluctuations in natural transi- 
tion. Slit 0.2mm. Time is from left to right and the intervals between dots are 0.01 8. 

disturbances. The intensity of the residual disturbances might be different from 
one run to another and from day to day. In  this sense the definition of ‘natural 
transition’ is vague and one is not expected to obtain the same experimental 
result for each run. Data presented here are results averaged over repeated 
observations. 

A survey of the velocity fluctuation was made by a hot-wire anemometer which 
is sensible only for the u-fluctuation. Some examples of oscillographic records of 
velocity fluctuations are reproduced in figure 8. At small values of X ,  wave-forms 
of fluctuations are almost sinusoidal, the higher frequency corresponding to the 
higher wind-speed. Figure 9 shows a map of streamwise velocity fluctuations 
obtained from the survey. In  hatched regions are found periodic velocity fluctua- 
tions. In  regions hatched by broken lines the existence of periodic fluctuations is 
not definite. In  regions left blank no u-fluctuation is found. 
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This does not mean that there are no velocity fluctuations in those regions. At 
the centre of the jet, for example, the lateral velocity fluctuation might have a 
maximum amplitude. At low Reynolds numbers velocity fluctuations are found 
only in a very small region (figure 9(a)). The region of sinusoidal fluctuation 
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(a) Urn = 88 cm/s (6) Urn = 116 cm/s ( c )  UO, = 231 cmls (d) Uoo = 486 cmls 
R, = 2hUdv=  12 R, = 16 R, = 31 R, = 65 

FIU~RE 9. Map of patterns of streamwise velocity fluctuations. 
Slit 0.2 mm, unit in millimetres. 

becomes broader as the Reynolds number is increased. An irregular wave-form 
is not observed anywhere in the jet until the slit Reynolds number reaches 65 
(figure 9 (d)).  The periodic velocity fluctuation a t  low Reynolds number dies out 
before the wave-form of the fluctuation becomes irregular. If the irregular wave- 
form represents a turbulent state, the transition Reynolds number, based on the 
maximum speed at the slit and on the width of the slit, is around 50. 

The reason why some disturbances appear and then disappear again will be 
discussed in the next section. 

The dependence of the frequency of the sinusoidal velocity fluctuation on the 
jet velocity is shown in figure 10. When a definite frequency is once established, 
there are no spatial variations in the frequency in X- and Y-directions. A simple 
relation between the frequency and the jet velocity can be deduced from a 
dimensional consideration. 

The frequency might be related to a characteristic velocity U and a charac- 
teristic length L by 

f cc U/L.  

In  a jet, the characteristic velocity is taken to be the velocity on the centre line, 
U, and the characteristic length is the breadth of the jet, b .  When the Reynolds 
number is high enough, the central velocity and the breadth does not change 
much in the X-direction in the region where the sinusoidal fluctuation is found. 
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Therefore, the central speed at the slit U,, and the slit width 2h might be taken as 
characteristic quantities. Thus, 

f cc uO0/2h. 
The frequency in this case is proportional to the jet velocity. This relation was 
found experimentally in a high Reynolds number jet (Sato 1960). In  a low 
Reynolds number jet, using Bickley’s calculation for the mean-velocity distri- 
bution, the characteristic quantities are expressed by 

U, cc M%X-*v-* cc Uio h8X-b-4, 

b at M-*Xb3 cc U,$h-*XbQ, 

in which the reduction of momentum near the nozzle is neglected. Then 

Velocity a t  the centre of slit, U,, (cm/s) 

FIGURE 10. Frequency of sinusoidal velocity fluctuations plotted against jet velocity. 
Solid line shows the relationf cc U:,. 

This means that the frequency is proportional to U:,. This relation is in contrast 
with that of a high Reynolds number jet. A full straight line in figure 10 illustrates 
the relationf cc Uio. Experimental points lie roughly on the straight line regard- 
less of the difference in the slit width. 

In  figure 11, a non-dimensionalized frequency, 8, ( = 2hf/UO0) is plotted against 
the slit Reynolds number 2hU0,/v. Values of 8, are between and at low 
Reynolds numbers. At high Reynolds numbers 8, is one order of magnitude 
larger than the value at low Reynolds numbers. It is interesting to note that the 
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same tendency is found for the Strouhal number of a wake of a two-dimensional 
cylinder (Roshko 1954). 

As mentioned before, when the slit R'eynolds number exceeds about 50, the 
wave-form of the periodic velocity fluctuation becomes irregular at a large 
distance from the slit. However, this does not necessarily mean that a fully 
developed turbulent jet is established. The velocity fluctuation may die out 
before energy equilibrium is achieved. The periodic wave-form gradually 
changes into an irregular pattern. No turbulent spots or bursts were observed. 

Slit Reynolds number R, = 2hUoo/v 

FIGURE 11. Non-dimensionalized frequency of sinusoidal velocity fluctuations plotted 
against slit Reynolds number. 

The instability of a jet due to artificial disturbances was investigated by intro- 
ducing sound into the jet from a loudspeaker placed near the jet. An audio- 
frequency oscillator was used for exciting the loudspeaker with a sinusoidal 
wave-form in the frequency range between 30 and 2000 c/s. Since the wavelength 
of sound is large compared with the dimensions of the jet, the disturbance is 
considered to  be uniform in the jet. In  other words, the whole jet is excited with 
the same intensity and phase. The difference in the exciting effect due to the 
relative position of the loudspeaker and the jet was not detected experimentally. 
The exciting sound must be loud enough to produce noticeable effects in the jet. 
On the other hand, if the intensity of the sound is too large, an immediate transi- 
tion to a turbulent jet or a non-linear development of the imposed disturbance 
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takes place. Therefore, the intensity of the sound should not exceed a certain 
limit. Considering these facts, the intensity of the sound was made t o  be about 
60 decibels at the jet. 

Effects of sound on the instability of a jet are different for different frequencies. 
The effect is detected by comparing outputs of a hot-wire anemometer in the 
absence and in the presence of sound. If the output increases in the presence of 
sound, the disturbance is registered as ‘amplified’. If the sound makes no 

Local Reynolds number, R, = U,b/v 
FIGURE 12. Amplification and damping of fluctuations induced by sound. Slit 0.2mm. 
0,  Amplified; 0 ,  not amplified; a), not clear. Ordinate: frequency of fluctuation non- 
dimensionalized by local flow conditions U ,  and b. Abscissa: local Reynolds number 
R, = U ,  blv. Solid line shows the theoretical neutral stability curve given by Tatsumi & 
Kakutani (1958). 

difference in the output the disturbance is registered as ‘not amplified’. The 
experimental results are shown in figure 12. The ordinate and abscissa are the 
non-dimensional frequency and the Reynolds number, respectively, both based 
on the central speed U ,  and the half breadth b.  The full line in the figure is the 
theoretical neutral curve calculated by Tatsumi & Kakutani (1958). Since the 
fluctuation induced by the sound grows in the flow direction, the observed effect 
of sound at a certain point in the jet is actually an integrated effect from the 
nozzle to the point of observation. The comparison of experimental results with 
the stability theory will be made in the next section. 

The wavelength of the induced velocity fluctuation was obtained by measuring 
the phase relation in the X-direction. The wavelength is around 3 to 20 times the 
half breadth of the jet b depending on the frequency. The propagation velocity 
calculated from the frequency and the wavelength lies between 0.35 and 0-7 times 
the central velocity increasing slightly as the Reynolds number increases. 

The amplitude distribution of u-fluctuation is shown in figure 13. The distribu- 
tion has a minimum on the centre-line and two peaks on both sides of the jet. 
The measurement of the phase relation in the Y-direction reveals that the phase 
difference of the artificially induced velocity fluctuation at any two symmetrical 
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points with respect to the centre-line is approximately 180 degrees. In  other 
words, the induced fluctuation is antisymmetric. This fact indicates that the jet 
is more unstable for antisymmetric disturbances than for symmetric disturbances. 

5. Comparison of experimental results with stability theory 

is neglected. The perturbation stream function is given in the form 
$(z, y, t )  = $(y) ei@-ct), 

in which $ is the amplitude function, a the wave-number, c = c, + ici, c, being the 
propagation velocity and ci giving the amplification rate. When the Navier- 

I 

In  existing stability theories the change of the basic flow in the flow direction 

FIGURE 13. Amplitude distributions of velocity fluctuations induced by sound. Slit 0.2 nun. 
Frequency of sound, 64 cjs. 0, U,, = 173 cm/s; X = 2 121111, b = 0.62 mm, R ,  = U ,  b/v = 20. 
0 ,  U,, = 313cm/s; X = 5mm, b = 0*7Omm, Rb = 41. 

Stokes equation is linearized by assuming the perturbation is small, the Orr- 
Sommerfeld equation follows. All quantities in the equation are non-dimen- 
sionalized by the central velocity and the width of the jet. As shown before, the 
central velocity and the jet width change in the flow direction as X-9 and Xs, 
respectively. The flow Reynolds number consequently increases downstream as 
Xa. The applicability of the Orr-Sommerfeld equation at  low Reynolds numbers 
should be determined by estimating the order of magnitude of neglected terms in 
the equation. The neglected terms are the lateral velocity V ,  and streamwise 
derivatives such as alJ/aX, 82U/8X2. These quantities are estimated by using the 
Bickley-type velocity distribution. 

The maximum value of V / U  is given by 

in which R, = U,  blv. 
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The ratio of maximum values of aU/aX and aU/a Y is given by 

( a u / a x ) m a x / (  au/a Y)max = 9.1 7/Rb. 

The ratio of maximum values of a2U/aX2 and a2U/aY2 is given by 

( a2 U/aXz)max/( a2 U/a Y2)max = - 6.2 1/R%. 
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From these results it is obvious that neglecting V ,  aU/aX and a2U/aX2 is justified 
at high Reynolds numbers. But at low Reynolds numbers, this gives a con- 
siderable error. For instance, for the flow Reynolds number R, = 3.5 (which is 
the theoretical critical Reynolds number, based on the half breadth of a jet, 
given by Tatsumi & Kakutani for a two-dimensional jet) the values of the three 
ratios are 0.2, 2.5 and - 0.5, respectively. To neglect the streamwise variation in 
the stability calculation is not considered valid at such a low Reynolds number. 

A difficulty in comparing experimental results with the stability theory comes 
out of the fact that the frequency, the wavelength and the amplification rate of 
a disturbance are non-dimensionalized by characteristic quantities, such as the 
central velocity and the breadth of the jet. When the Reynolds number is small 
they change considerably in the flow direction. If a disturbance of certain 
frequency is imposed at some point in a jet, the non-dimensionalized frequency 
changes in the flow direction as the disturbance travels downstream. If Bickley's 
velocity distribution is used for the calculation, the non-dimensionalized fre- 
quency ac, changes in proportion to X. Since the flow Reynolds number R, is 
proportional to X ) ,  ac, is proportional to Ri, The amplification of a superposed 
disturbance is the integral effect along lines of ac,cc Ri in the (ac,, R,) plane. Thus 
the spatial amplification A is given by 

in which ac&, is the spatial amplification factor of a small disturbance when the 
disturbance is considered to be amplified in the X-direction instead of along the 
time axis. There are no positive reasons why the phase velocity c, is to be used 
for the transformation between the time-wise and spatial amplification rates. 
The group velocity may also be used. In  the present case the group velocity 
obtained from the theoretical relation between a and c, at infinite Reynolds 
number is about 1 . 6 ~ ~  in the range 0.1 < acr < 1.15. The spatial amplification 
rates calculated b;y using two velocities are different in the factor of 1.6. The 
numerical factor 0.644 comes from the proportionality constant between X 
and Ri. 

In  order to execute the integration in the (ac,, R,)-plane the amplification 
factor must be known as a function of ac, and R,. Unfortunately, available 
theoretical results are either for the case of neutral stability (ci = 0 )  or for the 
amplification factor at an infinite Reynolds number. The neutral curve calcu- 
lated by Tatsumi & Kakutani (1958) was used. The functional form of acJc, ws ac, 
was assumed similar to the one a t  infinite Reynolds number calculated by 
Lessen & Fox (1955).  The starting-point of integration is the flow Reynolds 
number at the slit. 
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When the integration is made along a line ac, cc Rg starting from a point in the 
unstable zone, A increases at  first. At the Reynolds number corresponding to an 
intersection of the neutral curve and the uc,cc Rg curve, the value of ci is zero, and 
for larger Reynolds numbers ci is negative. If the integration is made up to the 
Reynolds number a t  which A becomes unity, ac, at that Reynolds number should 
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FIGURE 14. Comparison of amplification and damping of fluctuations induced by sound with 
theory. 0,  amplified; 0 ,  not amplified; 0 ,  not clear; B, natural fluctuation. (a) U,, = 117 
cm/s, B, = 16; ( b )  U,, = 173cm/s, R, = 23; (c) U,, = 231 cm/s, R, = 31; (a) U,, = 313 omis, 
R, = 42; ( e )  U,, = 486cm/s, R, = 65; (f) U,, = 770cm/s, R, = 103. Lower branch of solid 
lines is the neutral stability curve given by Tatsumi & Kakutani (1958). Upper branch is 
the ' integrated' neutral curve. Circle with cross denotes the frequency of fluctuation 
observed in natural transition. 

give the frequency of the integrated neutral disturbance. In other words, a small 
disturbance with a definite frequency, starting a t  the slit is amplified and damped, 
as i t  travels downstream, and ends at  the same amplitude. By making the 
integration along various sets of ac,cc RE curves, an integrated neutral cuke is 
obtained 8s shown in figure 14. Theuse of the group velocityfor the transformation 
gives no difference in the integrated neutral curve because the group velocity is 
proportional to the phase velocity. It is obvious that for different starting-points, 
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namely, for different slit Reynolds numbers, different neutral curves are obtained. 
In  figure 14, experimental results are shown with three kinds of symbol for 
denoting the amplification and damping. Generally speaking, the agreement 
between the integrated neutral curve and experimental results is good. Crossed 
circles indicate the frequencies of velocity fluctuations which are found in the 
natural transition. The frequency lies in the amplified zone. When the Reynolds 
number is small, that is, X is small, the non-dimensionalized frequency is small. 
The theoretical maximum amplification is expected to occur at ac, around 0.2. 
Experimental values of ac, at small R, are not too far from this value. 

In  the present experiment the Bickley-type velocity distribution is realized 
before an appreciable growth of a small disturbance occurs. In  the previous 
experiment made at higher Reynolds numbers, on the contrary, the instability 
takes place in the transient region of the jet, in other words, before the Bickley 
distribution is established (Sato 1960). These facts are explained by considering 
the difference in the rates of change for the establishment of the Bickley distribu- 
tion and for the growth of small disturbances. The distance in which the Bickley 
distribution is established is roughly the slit width times slit Reynolds number, 
while the growth rate of disturbances is smaller at smaller Reynolds numbers. 
Thus at large Reynolds numbers the growth of disturbances is faster than the 
change of the velocity distribution. 

In  the natural transition, there are extremely small residual disturbances in 
and around the jet. They are so small that they are not detected experimentally. 
Some of the disturbances are amplified in the jet. If the energy of residual 
disturbances is uniformly distributed over the frequency spectrum, the frequency 
component which has the maximum amplification rate will dominate the other 
components. This is the reason why sinusoidal velocity fluctuations are observed 
in the natural transition. When the Reynolh number is small, the amplification 
is small. Therefore, the selective amplification due to the difference in the 
amplification rate is not sharp. This fact explains the observed scatter of frequency 
of the periodic fluctuation at small Reynolds numbers. These considerations are 
valid in the region not far from the slit. At  a large distance from the slit the jet 
velocity becomes so small that the velocity fluctuation with an appreciable 
amplitude does not exist. This is one of the reasons why the velocity fluctuation 
once observed at small X disappears at large X .  

The determination of the critical Reynolds number is a fascinating problem in 
the study of a jet a t  low Reynolds numbers. This determination is, however, very 
difficult for the following reasons. In  the first place, the basic flow changes in the 
flow direction and so does the Reynolds number. Secondly, the amplification of 
a disturbance is small. It is difficult to distinguish the amplification and damping 
of superposed disturbances. To illustrate this point by a numerical example we 
consider a small disturbance which is superposed on a jet of Reynolds number 4. 
The increment of Reynolds number in the flow direction is taken to be 1. The 
value of the spatial amplification factor ac,/c, is assumed to be 0.1 considering 
that the maximum value at an infinite Reynolds number is 0.3. Then the calcu- 
lated amplification is 1.06. In  order to investigate a linear amplification, the 
amplitude of the initial disturbance must be very small. The detection of ampli- 
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fication of 1.06 of such a small disturbance is very difficult. Therefore, the 
experimental determination of the critical Reynolds number cannot be accurate. 
The present experimental results give no contradictions to the value of theoretical 
critical Reynolds number around 4. 

6. Conclusion 

indicated the following conclusions : 

is in agreement with Bickley’s theoretical result. 

to the slit Reynolds number R, ( = 2U0h/v) as follows: 

in a very small region. 

the jet. They die out without developing into irregular fluctuations. 

periodic fluctuations. 

of the jet velocity. 

The investigation of stability of a two-dimensional jet at low Reynolds numbers 

(1) The observed mean-velocity distribution on the laminar region of a jet 

( 2 )  The flow pattern of a jet at areduced disturbance level is classified according 

12 < R, < 20 w 30. The jet is entirely laminar or periodic fluctuations exist 

20 N 30 < R, < 40 N 60. Periodic fluctuations are found in a wide region of 

40 N GO < R,. Irregular fluctuations are observed downstream of the region of 

(3) The frequency of periodic fluctuation is roughly proportional to the square 

(4) No turbulent burst is observed in the transition region. 
(5) The validity of linearized stability theory is confirmed by the experiment 

when the Reynolds number is not too small. For the local Reynolds number 
R, ( = U, b/v) smaller than 10, the existing theory seems to be unrealistic because 
it neglects the streamwise variation of the flow field. 

(6) The existence of a critical Reynolds number is not verified experimentally. 

The authors appreciate the stimulating discussions held throughout the whole 
course of the investigation with members of the Boundary-Layer Research Group 
in Japan, which is directed by Prof. Itiro Tani. Thanks are extended to Mr Y. 
Onda who helped to carry out the experiment. 
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